

St. Joseph's Journal of Humanities and Science

ISSN: 2347-5331

Text Mining Techniques in Data Mining - Review

C. Christy^{a*} S. Arivalagan^b M.A. Maria Parimala^c

ABSTRACT

Discovering Knowledge in Databases and Extract Patterns and Knowledge in erroneous data is Data Mining. The quality of text details is extracted by text mining using Statistical Methods. Relevance, Novelty, Interestingness decides the accuracy of Text Mining. Categorization, clustering, entity extraction and sentiment analysis are used for text mining. Natural language processing, analytical methods related techniques, and algorithms are implemented.

Keywords: Data mining, Text mining, knowledge discovery. This survey is about the various techniques and algorithms.

1. INTRODUCTION

Text mining handles Textual data. It is Difficult to manipulate unstructured, unclear Textual Data. To Exchange the information a non-traditional retrieval strategy for information is used. For this process, Text mining is applied. Figure 1 shows the overall process of text mining. Nowadays, computers did the process better than human. The manual techniques are very expensive and time-consuming process. To achieve text mining, Extraction of information, conclude the information, tracking the topic, classification, and clustering technologies are used. For finding concepts

both Implicit and Explicit, natural language processing (NLP) [8, 13] and semantic relation knowledge discovery text (KDT) is applied. To process knowledge management, natural language process (NLP) employed a great role in generating knowledge from text. Remaining is done by Discovery process. For understanding text, KDT is very important.

2. TEXT MINING TECHNIQUES

Various types of techniques involved in process of text mining. The techniques are Information Extraction, Clustering, Classification, Information visualization.

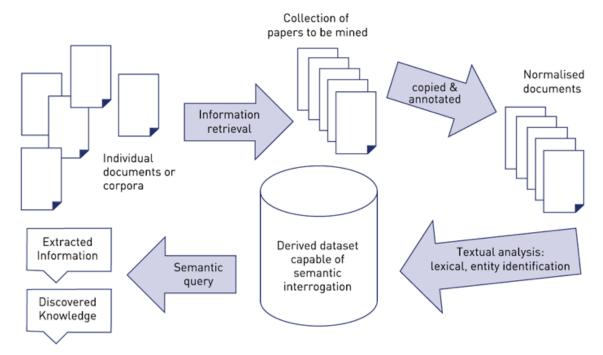


Figure 1: The Overall text Mining Process

2.1 Information Extraction

It's used for analyzing non formal text [6], and its simplification. The main process is understood the meaning and relation of the group of data. Formal information is derived from unformed information. Figure 2 Explains Information Extraction.

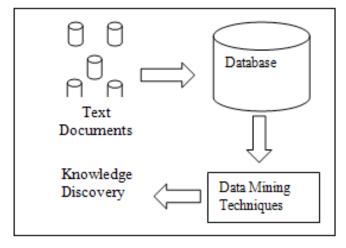


Figure 2: Process of Information Extraction

2.2 Clustering

Clustering Measures various kinds of information like objects, places etc. But not assigning any predefined Labels and classes. Grouping the text and the cluster of the group [4] generated by segregation. Separating and assign value for each word. Creating classes and similarities are calculated by clustering algorithms.

2.3 Classification

A huge collection of information is analyzed by Classification. Calculate the word count and topic of the collective information is decided by classification technique. It predefines the name of the class.

2.4 Information Visualization

Text mining is visually represented by this technique. Preparation of data, analysis & extraction of data, visualization mapping [19] on Information visualization is done by Information visualization. User's interaction with the document is based on scaling and zooming methods.

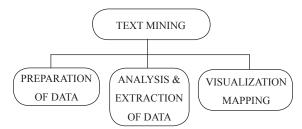


Figure 3: Process of Information Visualization

3. SURVEY OF LITERATURES

Yuefeng Li et AL [13]: classification method and Term based approaches are used by Text mining. The major issues are the problems of autonomy and synonymy.

The hypothesis is: Users prefers the comparison of pattern-based methods. One of the problems in text mining is the pattern of huge scale. In this work of clustering algorithm is used. Feedbacks for positive and negatives relevance based features are identified through methods of text mining.

Jianma et al [4]: classified automatically the text of English document is analyzed by the author. It's very difficult in other languages. In his work an approach of Ontology based text mining is used. SOM algorithm is efficiently developing Research proposals of both English and Chinese texts. This SOM algorithm helps to find absolute match of proposals and reviewers.

Chien - Liang Liu et al [2]: conclusion of this paper is sentiment-classification about rating of movies. The collaborated details of movie reviews depends feature based conclusions. Latent semantic analysis(LSA) Determines the features of product and minimize the summary size. Clustering algorithm is the best way of analyzing the classification of sentiment accuracy and calculating the response time during system design. implementation is based on NLP2 tool.

Xiuzhen Zhang et al [10]: The problem faced by all the reputation system is concentrated by the author. However, seller's reputation scores are large. Due to this buyers must select believable sellers. Comm. Trust is proposed by author to evaluate the trust. It's mostly based on mining of feedback through mining. Computation process is done by a model of multidimensional trust. Data sets are taken from E-BAY, AMAZON. In this work Lexical-LDA algorithm is used. Rank sellers got a large effective experiment through E-BAY, AMAZON data.

Dynaesh G.Rajpathak et al [9]: Finding new symptoms and failure of models by in time argumentation of D-matrix is the challenging task. The finding solution is based on fault diagnosis domain. In this work construct the concepts, relations abide with ontology of fault diagnosis. Through ontology find the needed facts and their dependencies from un formal verbatim repair data. Automobile domain is used for real life data collection and algorithms related to text mining are used. While composing of fault diagnosis, Ontology based text mining is applied to establish automatically mining the D-matrices of unformed repair verbatim data. For each D-matrices graph and its comparison algorithms are generated.

Johoshua Eliashberg et al [11]: the forecast of box office and crenulations point of movie performance is suitable only if it holds the script and the production cost. Approximately three levels are used for extract the features of text i.e. generate the content, Semantics, and bag of words from scripts used screen writing knowledge domain. Inputs are given by human and NLP techniques applied.

4. COMPARISONS OF VARIOUS TEXT MINING TECHNIQUES

Title	Techniques and Algorithm	Datasets	Parameter	Conclusion
Relevance Feature	F clustering	Training Dataset	Precision, Recall	Appropriate Text Mining
Discovery for Text	Algorithm			Models for Relevance Feature
Mining				Discovery Based on both
				Positive and Negative Feedback
An Ontology Based	Ontology Based Text	Data collected from	Frequency and	To Balance the similarities
Text mining methods	mining approach for	research social	Keyword	
to cluster proposals	group proposal and	Network		
for Research Project	SOM Algorithm			
Selection				
Movie Rating	Semantics analysis	Collected the movie	Recall, Precision	Achieve greater fluency of the
and Review	techniques and	reviews from		summarization
summarization	clustering algorithm	internet blogs		
environment				

T 1 1		D 1 1.	TD1 1 C	A.C. 11 . 1
Learning based	System for	Evaluation results on		A few evident advantages over
presentation slides	better quality	a test set of 100 pairs		base line methods and make
generation for	and hierarchical	of papers and slides	length of sentences,	slides more comprehensible.
academic papers	Agglomeration	collected on the web	Maximum length of	
	algorithm		slides	
Computing multi	Evaluation by mining	E-bay, Amazon	N-value, trust score	Efficiently address the all good
dimensional trust by	feedback techniques			reputation" issue and rank
mining E-Commerce	and lexical – Ida			sellers effectively
feedback comments	Algorithm			
An Ontology Based	Concepts and	Real life data	Fuel tank, hoses fuel	Mining the un structured repair
Text mining method	relationships observed	collected from		verbatim data collected during
to develop d-matrix	from fault diagnoses	automobile domain		fault diagnosis. Each D- Matrix
from un structured	domain and apply text			is a graph and develop graph
text	mining algorithm			comparison algorithms, so
				common patterns emerging
				from the heterogeneous
				d-matrix can be construct
				a single comprehensive
				d-matrices
Assessing box office	Kernel based	100 movie shooting	Portfolio (Return	The proposed methodology
performance using	approach	scripts	of investment)	predicts box office revenues
movie scripts			number of movies in	more accurately compared to
			Portfolio	benchmark methods
Text mining	A combination of	Total accident	Accident cast, count	Advances in the use of text
contribution to rail	techniques and	damage from 2011		mining for train safety
accidents	combination and	- 2012		engineering
	forest algorithms			
Document analysis	Document clustering	Real world	Attributes, distance,	The clustering algorithm to
for forensic analysis	algorithms to forensic	investigation cases	Initialization, K -	induce clusters formed by either
: An approach for	analysis of computers	conducted by the	Estimation	relevant or irrelevant documents
improving computer	seized in police	Brazilian federal		contributing to enhance expert
inspection	investigations	police department		examiners job

5. CONCLUSION

This paper provides a general idea of text mining techniques in various fields. To discover the knowledge from active data is the main objectives of data mining techniques. These applications use Clustering, Classification, information Extraction, and information visualization and so on. Review various classifications and clustering algorithm and its significance's is the future work.

REFERENCES

- [1] Luis Tari, Phan Huy Tu, Jorg Hakenberg, Yi Chen, Tran Cao Son, Graceiela Gonzalez, Information Extraction using Relational data, IEEE Transactions on Knowledge and Data Engineering, Vol, 24,No 1, January 2012.
- [2] Chien-Liang Liu, Wen Hoar Hsaio, Chia Hong Lee, Gen - Chi Lu and Emery Jou, Movie Rating and Review Summarization in Mobile Environment, IEEE Transactions on Systems, Man, Cybernetics - Part C: Applications and Reviews. Vol.42, No.3, May 2012.

- [3] Fuzhen Zhuang, Ping Luo, Zhiyoung Shen, Qing he, Zhongzhi Shi and Hui Xiong, Mining Distinction and commonality Across Multiple Domains Using Generative Model for Text Classification, IEEE Transactions on Knowledge and Data Engineering, Vol. 24, No 11, January 2012.
- [4] Jian Ma, Wei Xu, Yong Hong Sun, EFRAIM TURBAN Shouyang Wang and Ou Liu, An OntologyBased Text Mining Method to Cluster Proposals for Research Project Selection, IEEE Transactions on Systems, Man, Cybernetics - Part A: Systems And Humans, Vol.42, No.3, May 2012.
- [5] Charu C, Agarwal, Yuchen Zhao, abd Philip S.Yu., On the Use of Side Information FOR Mining Text Data, IEEE Transactions on Knowledge and Data Engineering, Vol. 26, No 6, June 2014.
- [6] Luis Filipie Da Cruz Nassif and Eduardo Raul Hruschka, Document Clustering for Forensic Analysis: An Approach for Improving Computer Inspection, IEEE Transactions on Information Forensic and Security. Vol. 8, No 1, June 2013.
- [7] Tsang, and Tak Lam Wong, Discovering Low Rank Shared Concept S pace for Adapting Text Mining Models, IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 35, No 6, June 2013.
- [8] Franciso Moraes Oliveira Neto, LEE D. Han, and Myong Jeon, Online Self Learning Algorithm for License Plate Matching, IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No 4, June 2013.

- [9] Dyyanesh G. Rajpathak and Satnam Sing., An Ontology Based Text Mining Method to Develop D-Matrix From Unstructured Text, IEEE Transactions on Systems, Man and Cybernetics Vol. 44, No.7, May 2014.
- [10] Xiuzhen Zhang, Lishan Cui and Yan Wang, Multi-Dimensional Trust Mining E-Commerce Feedback Comments, Vol. 26, No.7, May 2014.
- [11] Jehoshua Eliashberg, Sam K. Hui, and Z.John Zhang, A Kernal Based Approach on Accessing Box Office Performance Using Moviescripts, IEEE Transactions on Knowledge and Data Engineering, Vol. 26, No 11, November 2014.
- [12] Riccardo scandariato, James Walden, Aram Hovsepyan and Joosen, Predictong Vulnerable Software Components Via Text Mining, IEEE Transactions on Software Engineering, Vol. 40, No 10, october 2014.
- [13] Yuefeng Li, Abdulmohensen Albathan, Yan Shen and Moch Arif Bijaksana., Relevance Feature Discovery for Text Mining ,IEEE Transactions on Knowledge and Data Engineering, Vol. 27, No 6, June 2015.
- [14] Kamal Taha. IEEE Journal of Biomedical and Health Informatics, Extracting various classes of data from biological text using the concept of Existence Dependency Vol. 19, No 6, November.2015.
- [15] Beichen Wang, Xiaodo0ng Chen, Hiroshi Mamitsuka and Zhu, Mining Medline for finding Experts in Biomedical Domains based on Language Model, IEEE / ACM Transactions on computational Biology and Bioinformatics. Vol. 12, No 6, November / December 2015.